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A CHARACTERIZATION THEOREM 
FOR THE DISCRETE BEST MONOTONIC 

APPROXIMATION PROBLEM 

I. C. DEMETRIOU 

ABSTRACT. A characterization theorem is derived that motivates a procedure 
for generating discrete best monotonic approximations to n sequential data 
values, when a strictly convex objective function is used in the calculation. The 
procedure is highly useful in the discrete nonlinear optimization calculation that 
produces the best piecewise monotonic approximations to the data. 

1. INTRODUCTION 

Let f(x) be a smooth function of a single variable defined on the interval 
[a, b] of the real line, and let n be a positive integer. The function is measured 
on the finite mesh of data points a = xi < X2 < ... < Xn = b; the measurements 
Oi; i = 1, 2, ..., n} contain random errors {ei; i = 1, 2, ..., n} so that 

{Xi = f(xi) + ei; 1 = 1, 2, ... , n} . We regard the measurements as a vector 4 
in Ri. 

Let S c in be the set of vectors y in in whose components satisfy the 
monotonicity conditions 

(1.1) Yi < Y2 < _ Yn 

For any 4 in in, a vector y* in S is a best monotonically increasing approx- 
imation to 4 if it minimizes a function of the form 

n 

( 1.2) @(1 2,**, n h h(>i -Yi) 
i=l 

subject to y E S, where h is a continuous strictly convex function of one 
variable whose least value is h(O) and h(O) -+ x, as 101 x. From the 
assumptions on h it follows that, for all I, 

(a) q > T > Xi implies h(ki - i1) > h(k1. - T), 

(b) q < T < Xi implies h(k1 - i1) > h(k1 -T), 

and for any a 
(c) h(q; - a) is a minimum if and only if a = 0 . 
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There exists a unique best monotonically increasing approximation to 4) 
(Theorem 1 in 2) that can be efficiently derived by a method in [1]. 

In [3] we let h(O) = 02 in (1.2) and develop an algorithm that calculates the 
numbers 

(1.3) mmn j = 1, 2, n, 
I ?y2?<. 

in 0(n) computer operations. The algorithm is highly useful in the discrete 
nonlinear smoothing calculation that minimizes (1.2) with h(O) = 0 2, subject 
to a prescribed number of sign changes, say q, in the sequence of the first 
divided differences of the smoothed values. This calculation is carried out by 
a recursive technique [3, 2] in 0(n2 + q n * log2 n) computer operations by 
employing a large number of minimization calculations of the form (1.3). 

The purpose of this article is to show that the algorithm mentioned above, 
after some obvious modifications, is applicable for h any strictly convex func- 
tion as defined immediately after formula (1.2). A characterization theorem is 
derived that is proved by arguments more general than those in [3]. 

The paper is organized as follows. The existence and uniqueness of a best 
monotonically increasing approximation to 4) is asserted in Theorem 1 of j2. 
Then Lemma 1 shows that one can calculate the best monotonically increasing 
approximation to 4) by seeking the intervals where its components have differ- 
ent constant values. The intervals may be found using the remarkable property 
that any conditions which are satisfied as equalities by the approximation that 
occurs in the definition of a1 are also satisfied as equalities by the one in aj+ I 
cf. Lemma 3 and Theorem 2. Hence, the quantities (1.3) can be derived by a 
method similar to [3] in exactly n - 1 iterations. 

2. THE BEST MONOTONICALLY INCREASING APPROXIMATION 

The existence of a best approximation from S to 4) is established by Theo- 
rem I, which is a consequence of Weierstrass' theorem. The uniqueness follows 
from the strict convexity of the function (1.2). 

Theorem 1. Let the function 1 and the set S be as defined in 1. Then there 
exists a unique best monotonically increasing approximation from S to ) E iRn. 

Proof. Since '1 is continuous and 1(y) -- x as Ily I - , the set V 
{y: 1(y) < 1(O)} is closed and bounded; here 0 E V. Since S is closed 
and 0 E S, the set V n S is closed, bounded and nonempty. Hence, from 
the continuity of 1(y) for y E V n S, there exists a finite value u* and a 
vector y* E V n S such that 1(y*) = u* = miny vns(y) . As infy YS(y) 
minYE0ns I(y), it follows that 1(y*) = u* = infyC 5Io(y). Thus y* minimizes 
o on S. Further, since PD is strictly convex, it can be shown by well-known 
arguments that y* is unique. o 
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A useful property of the best monotonically increasing approximation is 
stated in the following lemma. It shows that any condition yi < Yi+l that 
is satisfied by y* in the form yi < Y?1+ provides some separability in the 
calculation of y* . 

Lemma 1. Let h be the function defined in ? 1, let y* be the member of y C S 
that minimizes the function (1.2), and let s be any integer in [1, n - 1] such 
that ys* <y*+. Then {y7; i= 1,2,... ,s} and {y7; i=s+l,s+2, ..., n} 
are the best monotonically increasing approximations to {q$1; i = 1, 2, ... , s} 
and {i ; i = s + 1, s + 2, ..., n}, respectively. 

Proof. We assume the contrary, and define y E Rin to be the vector that min- 
imizes (1.2) subject to the conditions y1 < y2 < < ys and Ys+1 ? Ys+2 
*?< Yn . If y happens to satisfy the inequality Ps < Ys+l, then y E S and, by 
assumption, we obtain ?(y() < 4(y*), a contradiction to the optimality of y* . 
If fs > js+l?, let O(y) = * + (1 - 0)y, 0 E [0, 1]. As Y* <YS+l ,there exists 
a Ho E (0, 1) such that y(O) E S for 0 EE [00 1). Hence by the convexity of 
4 and the initial assumption, we obtain 

04 y( 0) ) < O ( (y) + (I 1 0 0) < ( y ) ( y ) [00 ) 

again a contradiction. The assertion of the lemma follows. o 

Lemma 1 implies that, in order to calculate y*, we can equivalently seek the 
conditions in (1.1) which are satisfied as equalities in y*. Theorem 2 below 
provides the basis for determining these conditions. To prove Theorem 2, we 
need two lemmas, which are stated after the following definition. If s and t 
are any integers such that 1 < s < t < n, define qs, to be the value of q that 
minimizes the expression 

(2.1) fost(r) E h(oi- 1) . 
i=s 

Since the function h in (2.1) is strictly convex, is, is unique. 

Lemma 2. Let the integers s, t be given such that 1 < s < t < n and let 
{y7; i = s, s + 1, .I. , t} be the best monotonically increasing approximation to 

{0;i=s, s + I,... t} . If Y5* = Ys*+ I =Y,* = qst I then 

(2.2) qsl > qst > q1+,t for s < l < t. 

Proof. The inequality qsl < l 1,t cannot hold because otherwise we can re- 
place each member of the sequence {y*; i = s, s + 1. } by qsl and each 
member of the sequence {y7*; i / I + 1, I + 2, ..., t} by q1+,t, which main- 

tains monotonicity but reduces the value of Et=s h(?i. - yi) . A contradiction 
is derived, and the inequality qsl > q1+l, follows. 

In order to prove (2.2), we first suppose that ,+I , t> qst . Then q1s > ?i1/l, > 

sti . From this, and using a reasoning that is based on the strict convexity of h 
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and (2.1), we obtain 

(Dst ( st) = Ds, ( st) + (DI+ I, t (,4 st) 

> (Ds/ (ql1+ I, t) + (DI+ I, t (ql+ I, t) = (D^st (q1+ I, t) 

a contradiction to the definition of jst . It follows that '+ I t < "st . By similar 
arguments we derive q1st < qsl . The last two inequalities complete the proof of 
the lemma. o 

Lemma 3. Let y* be the member of y E S that minimizes (1.2), let I be any set 
of integers such that I c { 1, 2 . ,-1 } and let y be the vector that minimizes 
(1.2) subject to the conditions {yi < yi+1; i E I}l. Then, the inequalities 

(2.3) 91> y? and Y< 
hold. Further, if j is an integer in [1, n - 1] such that Yj* < YJ+1, then 

(2.4) 9j < y* and Yj+l ?9+ 

Proof. Assume that 1 E i, because otherwise 91 = q1 and the first inequality 
in (2.3) follows from the fact that 01 > y* . Let s - 1 be the greatest integer 
in I such that 

(2.5) 9 2 Ys 

which, in view of the comment following Lemma 1, implies that {9i; i = 

1, 2, ... , s} is the best monotonically increasing approximation to the first 
s data. If y* < Ys+J, then fu = y* by uniqueness arguments; otherwise, we 
assume that 1 < y*, which, owing to the conditions satisfied by y and (2.5), 
implies that 9s < y> . Hence, we can replace the first s components of y* by 
the first s components of y, which maintains monotonicity but reduces the 
value of (D(y), for we have ruled out the possibility that {y7; i = 1, 2, ... , s} 
is the best monotonically increasing approximation to the first s data. There- 
fore, 91 > y* follows, and 9n < Yn may be shown similarly. 

In order to show the relations (2.4), we assume that 9j , because oth- 
erwise these relations follow from the first part of the lemma. Let 9j 9j+I > 

YJ+1 , let m(j) and g(j) be the smallest and the largest integer, respectively, 
in I such that {9i 9j; i E [m(j), g(j)]}, and let k be the smallest integer 
in the set {i; y* < yI+1, i E [m(j), j]}. Then Y = /,1 for some integer I 
in [ 1, m (j)]. From this, and by Lemma 2, we obtain K'm( j) k > ?'m(j), g(j) and 
rlm(j)k <Y. Thus, 

qm(j), k < Yk < yj < yi 
- 

m(j), g(j) < t1m(j), k 

a contradiction. We similarly derive a contradiction if we assume that < 

yj = 9j+ I YJ+ or yj > yj= 9j+I. Hence, the assumption 9X = must 
be false. Thus $j : 9~j+ and (2.4) follows from Lemma 1 and the first part of 
this lemma. n 

The characterization theorem for the best monotonically increasing approx- 
imation to q now follows. 
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Theorem 2. Let y* be the member of y E S that minimizes (1.2), let I be any 
subset of { 1, 2 . .., n - I} and let y be the vector that minimizes ?D(y) subject 
to {yi < yipI; i E I}. If j is any integer in [1, n - 1] such that Y1 

then YJ = YJ+1 

Proof. If YJ < YJ1 then in view of inequalities (2.4) and the definition of 
y we obtain yj < yj+l, which contradicts the definition of j. Hence, the 
assumption made must be false and the equation J = follows. The proof 
of the theorem is complete. oi 

Theorem 2 shows that if y is the best approximation to 4 subject to a 
subset of the monotonicity conditions (1.1), then any condition violated by 
y is satisfied as an equality by the solution. Thus, the theorem allows the 
development of an iterative procedure that inserts one monotonicity condition 
at a time in y, and therefore terminates in exactly n - 1 iterations as the process 
suggested in [3], giving the best monotonically increasing approximation to the 
data. 
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